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A method of resolving the Boltzmann quantum equation 
in the field of electronic relaxation 

J HUE and R MAINARD 

Faculte des Sciences, Universite de Nancy I, France 

MS received 25 March 1971, in revised form 30 July 1971 

Abstract. A method is given for resolving the quantum equations of the spin-lattice relaxa- 
tion for a system of electronic spins. It is shown how the relaxation times may be deduced, 
for example, from the maxima which occur in the absorption spectra of a modulated radio 
frequency field and also that, for a generalized spin, more than one maximum may be 
expected. 

1. Introduction 

In certain paramagnetic relaxation experiments (for example, Hervf: and Pescia 1962, 
Zueco and Pescia 1965) the spin-lattice relaxation time is measured using an amplitude 
modulated radio frequency field. If the amplitude of this RF field is taken to be 
H I (  1 + d cos p t )  the detected signal will have the form 

S = fib) sin p t  +f2(p) cos p t  (1) 

the exact form of S and of the functions f,(p) and fib) depending on the system of 
detection chosen. 

The first attempts to relate the functions fi and f2 to the relaxation times of the spins 
have been restricted to a spin f and have used either the formalism of Bloembergen ef a1 
(1948), extended to the electronic case, or the phenomenological equations given by 
Bloch (1946). Even where Pescia and Bassompierre (1962) have used the density matrix 
approach, the result could not be generalized to S > 4. 

In the present theory we have derived expressions for f l  and f2 the form of which 
will be valid for all values of spin (although the detailed calculation is given only for 
S = 1). Further, the theory gives the true relaxation times, rather than the time constants 
defined phenomenologically, in a form which can be compared directly with experiment. 

In effect, the theory consists ofthree steps. Firstly, following the method of Wangsness 
and Bloch (1953) (see also Bloch 1956, Willis 1962, Willis and Bergmann 1962) the 
equation of motion of the spin system is determined in the presence of an RF field and 
a spin-lattice relaxation coupling. Secondly, it is shown that the spin-lattice coupling 
can be expressed in terms of a relaxation matrix [r] and that this matrix can be resolved 
to yield relatively simple eigenvalues. Finally these eigenvalues are related to the 
functions f l  and f2 of equation (1) when the external RF field is modulated at the fre- 
quency p .  
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2. The equation of motion of the spin system and the relaxation matrix [ r] 

If it is considered that the spin and lattice Hamiltonians can effectively be written in 
terms of Xs the spin Hamiltonian in an external magnetic field, ;Xph the Hamiltonian 
of the lattice phonons, and .XC the spin-lattice coupling term, the equation of evolution 
of the density matrix can be written as 

1 
p = --[.2F\+.2Fph+.j/r,p]. (2 ,  h 

The elements of p can be written as (mfslplmlf's') where m and m' represent the spin 
state quantum numbers, f '  and f '  the frequency states of the lattice which may be 
treated as a thermostat for the electronic relaxation and s, s' are the degeneracies of the 
states f ,  f ' .  If then we assume that the thermostat is diagonalized we can define a spin 
density matrix 

The equation of motion of this matrix is given from equation (2) using the perturba- 
tion theory of Wangsness and Bloch as 

where 

x (m' ,  f'+ TO, s'I #c,lm'$s) df 

with 

q s ( f )  being the density of states at the frequencyf. The parameter T takes integral values 
depending on m, m' such that ( m  + 5 )  and (m' + T )  run from - S to S .  Also 

Although equation (4) was originally derived for nuclear relaxation, Willis and 
Bergmann (1962) have shown that the same 'algebraic structure' can be obtained by 
imposing on the relaxation equations a stationary solution in interaction representation, 
a quite acceptable demand in the field of electronic relaxation. The form of [r] then 
appears as a consequence of the conservation of energy. (In particular the existence of 
time independent relaxation coefficients is justified by the agreement between para- 
magnetic relaxation experiments and the time independent transition probabilities 
calculated by Van Vleck (1940) as discussed by Stevens (1967).) 

In the experimental situation where a static field H, is applied along the axis of 
symmetry Oz and the rotating RF field H' is in the plane perpendicular to H , ,  the spin 
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Hamiltonian will have the form (eg Low 1960) 

with H: = H' cos o t  and H: = H' sin wt. When the equations of motion are trans- 
formed to the rotating frame with angular frequency o, so that operators are changed, 
say, from d to 0 by d = exp( - iwS,t)D exp(ioS,t) the equations (4) will become 

8m,,,f = i[S,, e]mm.(~-oo)-iylH1[S,, i?],,,,. 

where 

In the experimental situation this equation is simplified since the RF field is applied 
at resonance, that is, o = oo. 

3. The structure of the matrix [q 

Because only those terms which have the same value of m - m' are in fact coupled in 
the equation (6) it will always be possible to separate the matrix equations into effective 
submatrices having constant values of m'-m. This may be illustrated for the case 
S = 1 by taking the components of the vector t~ in the order 

for which the corresponding submatrices of [r] are 

M, = (2rO, 1- 2(r! - + qy) 

M5 = (21-7 - - 2(rp,+ r! - l)). 

(m'-m = - 2 )  

(m'-m = 2) 
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I 

The [r] matrix 

Because of the symmetry properties of equation (5) it is seen that the matrix M, 
has two lines identical which gives a zero eigenvalue corresponding to the Boltzmann 
equilibrium while the determinants of the other matrices are nonzero. Further, the 
matrices M, and M, can be seen to be identical. 

The integration of the relaxation equation 

ir = [r10 

a) = exP([rIMo) (8) 

gives, in the absence of any external excitation 

with 0 taken from (7). The relaxation times are then the negative of the reciprocals of 
the eigenvalues of the matrix [r] (see LurGat 1956). 

4. The equation of motion in the presence of the external excitation 

If the commutator [-is,, 61 is developed in equation (6) and the excitation field, 
applied at the resonance frequency, is modulated as H'(1 +dcospt) the equations of 
motion become 

and, in actual experiments, d is appreciably less than one. M can be divided into sub- 
matrices in a manner similar to that indicated for [r] except that the only nonzero 
elements of M occur where there are zero elements of [r]. Thus M and [r] can be 
considered, in effect, 'complementary'. 
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For S = 1 the matrix M is 
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With the modulation small the coefficient b can be considered small and the equation (9) 
can be linearized. Then 

The solution of equation (13) can be taken to be of the form 

Go@) = exp(At)ao(O) (15) 

but, provided that theRF field H' is not too high, the solution to this zero order expression 
may be taken, to good approximation, to be the stationary solution in the absence of 
modulation. This solution corresponds to the case where 

A .  b o  = ir0 = 0. (16) 

(That is, ao(0) is an eigenvector of A for the eigenvalue zero to the first order in a.) 
Equation (15) then gives 

Ignoring transient solutions for (14) it is convenient to write 

(18) al = a, cos p t +  fll sin p t  
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from which one obtains, on identifying the different terms 

(A2+p21)a1 = - A .  M . ~ ~ ( 0 )  and (A2+p21)j31 = p M  . a,(O) (19) 

where I is the unit matrix and (A2 + pzI) is certainly invertible. 

a, = -(A2 +p*I)- ' , A .  M , a,(O) and 

The equations (19) now give the coefficients for the solution with modulation as 

= p(A2 +p21)- ' . M . o,(O). 

(20) 

The combination of equations ( l l ) ,  (18), (19) and (20) gives the first order equation 
of the motion of a under the influence of the modulation as 

~ ( t )  = ao(0)- b(A2 +pzI)-' . A .  M . ~ o ( 0 )  COS pt 

+bp(A2 +p2I)-' . M . a,(O) sin p t .  (21) 

5. Deduction of the relaxation times 

The expression of the coefficients a1 and fl1 of the equations (20) in a convenient form 
can be obtained with the aid of the Lagrange interpolation polynomials (see Gantmacher 
1959). As is shown in the Appendix it is possible to express any function f(A) of the 
matrix A in terms of its eigenvalues A i  and the corresponding matrices Zi which are 
independent oftheform off(A). Then f(A) = Z i Z i f ( A i )  and for the present case 

Since A = [r] + a M  and a is assumed small, the eigenvalues A ,  which appear in equation 
(22) can be derived from those of [r] by the normal perturbation technique. However, 
although the degeneracy of [I?] is lifted, the changes in the eigenvalues are found to be 
of second order in a so that the eigenvalues A ,  may be taken to be related directly to the 
relaxation times as 

(23) 
1 

A ,  = -+a2C,. 
T, 

The measurement of the quantities A ,  can be undertaken in a number of ways, each 
depending in effect on the variation of the z component of the magnetization l Z Z .  
Then, since by definition of rs (equation (3)) 

d 
dt 

= -(Tr r ~ .  MZ) = Tr 

and Az is diagonal, (Az) will depend only on the diagonal elements of rs (which are 
the same as those 5), the form of (Az) can be taken from the appropriate terms of 
equation (21) to give an expression of the form 

kip sin pt + c ___ I iP2 cospt 
( R Z )  = zA:+p2 I A ? + $  
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- I 
5 

where ki and li will depend on the exact form of Zi ,  A and M in equation (21). It is thus 
seen that the dependence of fib) and f 2 @ )  of equation (1) on p is relatively simple 
(although, in practice, the coefficients ki and li may be relatively complex). 

If now, for example, one detects the component of the signal in quadrature, this 
component will have an amplitude proportional to 

Slope C, 

_. 7 

which will vary with the modulation frequency and should show a number of maxima 
(in general of magnitude decreasing with increasing Ai)  one for each value of A i  when 
p 5 Ai, provided that these values are well separated. The variation of p in the vicinity 
of a frequency Ai will then give the signals as indicated in figure 1. The value found for 
Ai  will vary with the signal amplitude (a2  K ( H ' ) 2 )  according to equation (23) and the 
corresponding relaxation time may be found by extrapolation as indicated in figure 2. 
Similar results may be obtained by detecting the signal in phase, which will be propor- 
tional to Cili{p2/(A2 + p 2 ) )  or the total amplitude of the signal at frequency p which will 
be proportional to 

{( 7 &) 2 +  (F &) 2}1'2 

although this latter case would only be valuable for comparison (Herve and Pescia 1962). 

Conclusion 

A2 A3 
P 

Figure 1. Variation of signal with frequency p in the 
vicinity of Ai. 

0 02 

Figure 2. Variation of A i  with signal 
amplitude. 

In conclusion we see that the method for the resolution of a Boltzmann quantum 
equation which is developed here can be used for the determination of relaxation times 
in paramagnetic electronic relaxation in varying experimental situations. 

In the case where the principal Hamiltonian 2," of the spin system does not have 
the relatively simple form which we have used, the problem is clearly more complicated 
but the general method remains valid since the key of the method results from the 



178 J Hue and R Mainard 

particular structure of the matrix [r] which breaks up into diagonal blocks; this 
particularity which appears here for S = 1 as the consequence of equal splitting of the 
magnetic levels of 2," is, in fact, much more general. 
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Appendix. Definition of the matrix Z 

Consider an n x n matrix A with eigenvalues Ai  (which for convenience we take to be 
nondegenerate) and a function f ( A )  such that the values f(Ai) are defined for all i. I f  we 
introduce the interpolation polynomials given by Lagrange as 

n 

/ ' (Ai  1 
( i - A l ) ( l . - A 2 ) .  . . ( j . - A i - l ) ( ~ . - A i + l ) .  . .(A-A,,) 

r ( i )  = C 
j = l  ( A i - A , ) ( A i - A 2 )  . . . (  A i - A i - 1 ) ( A i - A i + l ) . .  . ( A j - A n ) '  

then, since f ( A i )  is calculable, the function of the matrix becomes 
n 

f(A) = Zi(A)f(Ai) 
i= 1 

with 

(A - AlI)(A- A2I) .  . . (A -Ai-  I I)(A - Ai+ 11).  . . (A - A,I) 
Zi(A) = 

( A i - A 1 ) ( A i - A 2 ) . .  . ( A j - A i - , ) ( A i - A i ~ ~ ) . .  . (&A,)  

I being the unit matrix. We see that, as stated, the matrices Zi do not depend on the form 
of f(2) which, in the present case, is ( i 2 + p 2 ) - '  (the method may be extended to the 
degenerate case by the introduction of the Lagrange-Sylvester polynomials, see 
Gantmacher 1959, p 102). 
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